This is a demo store. No orders will be fulfilled.

Click Here for 5% Off Your First Aladdin Purchase!

SB431542

Specifications & Purity: ≥98%

For research use only. We do not sell to patients.

Item Number
S125924
Grouped product items
SKU Size Availability Price Qty
S125924-10mg
10mg
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$782.90
S125924-50mg
50mg
Available within 4-8 weeks(?)
Items will be manufactured post-order and can take 4-8 weeks. Thank you for your patience!
$3,089.90
S125924-100mg
100mg
Available within 8-12 weeks(?)
Production requires sourcing of materials. We appreciate your patience and understanding.
$4,943.90
ALK inhibitor

Basic Description

Synonyms SB 431542; SB431542; 4-[4-(1,3-Benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]-benzamide;4-(5-Benzol[1,3]dioxol-5-yl-4-pyrldin-2-yl-1H-imidazol-2-yl)-benzamide;4-[4-(3,4-Methylenedioxyphenyl)-5-(2-pyridyl)-1H-imidazol-2-yl]-benzamide
Specifications & Purity ≥98%
Storage Temp Store at -20°C
Shipped In Dry ice
Description

SB431542 is a potent and selective inhibitor of ALK5 with IC50 of 94 nM in a cell-free assay, 100-fold more selective for ALK5 than p38 MAPK and other kinases.
A specific and selective inhibitor of TGF-β type I ALK receptors and Smad3.

Names and Identifiers

IUPAC Name 4-[4-(1,3-benzodioxol-5-yl)-5-pyridin-2-yl-1H-imidazol-2-yl]benzamide
INCHI InChI=1S/C22H16N4O3/c23-21(27)13-4-6-14(7-5-13)22-25-19(20(26-22)16-3-1-2-10-24-16)15-8-9-17-18(11-15)29-12-28-17/h1-11H,12H2,(H2,23,27)(H,25,26)
InChi Key FHYUGAJXYORMHI-UHFFFAOYSA-N
Canonical SMILES C1OC2=C(O1)C=C(C=C2)C3=C(NC(=N3)C4=CC=C(C=C4)C(=O)N)C5=CC=CC=N5
PubChem CID 4521392
Molecular Weight 384.39

Certificates

Certificate of Analysis(COA)

Enter Lot Number to search for COA:

To view the certificate results,please click on a Lot number.For Lot numbers from past orders,please use our order status section

1 results found

Lot Number Certificate Type Date Item
K2125415 Certificate of Analysis Sep 11, 2023 S125924

Chemical and Physical Properties

Solubility Soluble in DMSO (77 mg/ml at 25 °C), ethanol (45 mg/ml at 25 °C), DMF (~20 mg/ml), DMSO:PBS (pH 7.2) (1:1) (~ 0.5 mg/ml), and water (<1 mg/ml at 25 °C).
Sensitivity Heat sensitive
Melt Point(°C) 214 °C(dec.)

Related Document

FAQs and Articles

Product Questions

Product Questions

Sign In Hover me Please sign in to submit a question
No questions yet. Be the first to ask the question!

Reviews

Customer Reviews

Associated Targets

CTH Tchem Cystathionine gamma-lyase 7 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

C7orf77 Tdark Uncharacterized protein C7orf77 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

C8orf34 Tbio Uncharacterized protein C8orf34 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CGGBP1 Tbio CGG triplet repeat-binding protein 1 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

C8orf76 Tdark Uncharacterized protein C8orf76 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CHD1 Tbio Chromodomain-helicase-DNA-binding protein 1 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CHERP Tbio Calcium homeostasis endoplasmic reticulum protein 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CHP1 Tbio Calcineurin B homologous protein 1 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CAMTA2 Tbio Calmodulin-binding transcription activator 2 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CNBD1 Tdark Cyclic nucleotide-binding domain-containing protein 1 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CNBD2 Tdark Cyclic nucleotide-binding domain-containing protein 2 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

COMTD1 Tdark Catechol O-methyltransferase domain-containing protein 1 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

NCAPD3 Tbio Condensin-2 complex subunit D3 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CMTR2 Tbio Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 2 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CTNNBIP1 Tbio Beta-catenin-interacting protein 1 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CNDP2 Tbio Cytosolic non-specific dipeptidase 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

PDE6H Tclin Retinal cone rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit gamma 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CTDNEP1 Tbio CTD nuclear envelope phosphatase 1 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CNFN Tdark Cornifelin 0 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

CNKSR1 Tchem Connector enhancer of kinase suppressor of ras 1 30 Activities

Activity Type Activity Value -log(M) Mechanism of Action Activity Reference Publications (PubMed IDs)

References

1. Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lehr R, Mathur A et al..  (2002)  Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5)..  J Med Chem,  45  (5):  (999-1001).  [PMID:11855979]
2. Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS.  (2002)  SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7..  Mol Pharmacol,  62  (1):  (65-74).  [PMID:12065756]
3. Kutsche LK et al..  (2018)  Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis..  Cell Syst,  (4):  (438-452.e8).  [PMID:30292704]
4. Abarca-Buis R et al..  (2020)  Control of fibrosis by TGFß signalling modulation promotes redifferentiation during limited regeneration of mouse ear..  Int J Dev Biol,  64  (7-8-9):  (423-432).  [PMID:33063836]
5. Salehi H et al..  (2019)  Application of Hanging Drop Culture for Retinal Precursor-Like Cells Differentiation of Human Adipose-Derived Stem Cells Using Small Molecules..  J Mol Neurosci,    ():  ().  [PMID:31363912]
6. Chen H et al..  (2012)  Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury..  Stem Cells,  30  (9):  (1948-60).  [PMID:22696116]
7. Minutti CM et al..  (2019)  A Macrophage-Pericyte Axis Directs Tissue Restoration via Amphiregulin-Induced Transforming Growth Factor Beta Activation..  Immunity,  50  (3):  (645-654.e6).  [PMID:30770250]
8. André PA et al..  (2015)  BARD1 mediates TGF-ß signaling in pulmonary fibrosis..  Respir Res,  16  ():  (118).  [PMID:26415510]
9. Liberti DC et al..  (2021)  Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury..  Cell Rep,  35  (6):  (109092).  [PMID:33979629]
10. Keatinge M et al..  (2021)  CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury..  PLoS Genet,  17  (4):  (e1009515).  [PMID:33914736]
11. Konishi S et al..  (2022)  Defined conditions for long-term expansion of murine and human alveolar epithelial stem cells in three-dimensional cultures..  STAR Protoc,  (2):  (101447).  [PMID:35712012]
12. Esteves TC et al..  (2011)  Somatic cell nuclear reprogramming of mouse oocytes endures beyond reproductive decline..  Aging Cell,  10  ():  (80-95).  [PMID:20969722]
13. Xiang Y et al..  (2020)  Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons..  Mol Cell,  79  ():  (84-98.e9).  [PMID:32526163]
14. Zong W et al..  (2015)  Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells..  J Zhejiang Univ Sci B,  16  (10):  (857-64).  [PMID:26465133]
15. .  (1991)  From the Centers for Disease Control. AIDS Clinical Trials Information Service..  JAMA,  266  (13):  (1756).  [PMID:1653860]
16. Teisanu RM et al..  (2011)  Functional analysis of two distinct bronchiolar progenitors during lung injury and repair..  Am J Respir Cell Mol Biol,  44  (6):  (794-803).  [PMID:20656948]
17. Ateaque S et al..  (2022)  Selective activation and down-regulation of Trk receptors by neurotrophins in human neurons co-expressing TrkB and TrkC..  J Neurochem,  161  (6):  (463-477).  [PMID:35536742]
18. Xiang Y et al..  (2018)  Generation and Fusion of Human Cortical and Medial Ganglionic Eminence Brain Organoids..  Curr Protoc Stem Cell Biol,  47  ():  ().  [PMID:30854156]
19. Xiang Y et al..  (2020)  Generation of Regionally Specified Human Brain Organoids Resembling Thalamus Development..  STAR Protoc,  ():  ().  [PMID:33103124]
20. Xiang Y et al..  (2019)  hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids..  Cell Stem Cell,  24  (3):  (487-497.e7).  [PMID:30799279]
21. Katsura H et al..  (2020)  Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction..  Cell Stem Cell,  27  (6):  (890-904.e8).  [PMID:33128895]
22. Hargus G et al..  (2014)  Origin-dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain..  Cell Rep,  (6):  (1697-703).  [PMID:25220454]
23. Wimmer RA et al..  (2019)  Human blood vessel organoids as a\xa0model of\xa0diabetic vasculopathy..  Nature,  565  (7740):  (505-510).  [PMID:30651639]
24. Malaguti M et al..  (2019)  Id1 Stabilizes Epiblast Identity by Sensing Delays in Nodal Activation and Adjusting the Timing of Differentiation..  Dev Cell,  50  (4):  (462-477.e5).  [PMID:31204172]
25. Khanam R et al..  (2022)  Identification of Adamts4 as a novel adult cardiac injury biomarker with therapeutic implications in patients with cardiac injuries..  Sci Rep,  12  ():  (9898).  [PMID:35701493]
26. Ashja-Arvan M et al..  (2020)  Impact of IFN-ß and LIF overexpression on human adipose-derived stem cells properties..  J Cell Physiol,    ():  ().  [PMID:32324266]
27. Kim D et al..  (2015)  Impaired osteogenesis in Menkes disease-derived induced pluripotent stem cells..  Stem Cell Res Ther,  ():  (160).  [PMID:26347346]
28. Sabate-Soler S et al..  (2022)  Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality..  Glia,  70  (7):  (1267-1288).  [PMID:35262217]
29. Xu M et al..  (2021)  MicroRNA-17-5p restrains the dysfunction of Ang-II induced podocytes by suppressing secreted modular calcium-binding protein 2 via NF-κB and TGFβ signaling..  Environ Toxicol,  36  (7):  (1402-1411).  [PMID:33835671]
30. Liu H et al..  (2022)  MicroRNA-642b-3p functions as an oncomiR in gastric cancer by down-regulating the CUB and sushi multiple domains protein 1/smad axis..  Bioengineered,  13  (4):  (9613-9627).  [PMID:35412956]
31. Zhu K et al..  (2014)  MiR-302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelial-mesenchymal transition of endothelial cells..  Sci Rep,  ():  (5524).  [PMID:25027009]
32. Zhang M et al..  (2022)  Prkg2 regulates alveolar type 2-mediated re-alveolarization..  Stem Cell Res Ther,  13  ():  (111).  [PMID:35313961]
33. Yang YH et al..  (2016)  Stromal Tissue Rigidity Promotes Mesenchymal Stem Cell-Mediated Corneal Wound Healing Through the Transforming Growth Factor ß Signaling Pathway..  Stem Cells,  34  (10):  (2525-2535).  [PMID:27250866]
34. Kelly TJ et al..  (2019)  Temporal Control of the TGF-ß Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities..  Cell Rep,  29  (9):  (2702-2717.e7).  [PMID:31775039]
35. Kang Y et al..  (2016)  Transforming Growth Factor-ß Limits Secretion of Lumican by Activated Stellate Cells within Primary Pancreatic Adenocarcinoma Tumors..  Clin Cancer Res,  22  (19):  (4934-4946).  [PMID:27126993]
36. Epping MT et al..  (2015)  TSPYL2 is an essential component of the REST/NRSF transcriptional complex for TGFß signaling activation..  Cell Death Differ,  22  (8):  (1353-62).  [PMID:25613376]